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Introduction 

 Fixed point theorems are very important tools for providing evidence of the existence and 

uniqueness of solutions to various mathematical models. The literature of the last four decades 

flourishes with results which discover fixed points of self and nonself nonlinear operators in a metric 

space. The Banach contraction theorem plays a fundamental role in fixed point theory and has become 

even more important because being based on iteration, it can be easily implemented on a computer. 

These theorems provide a technique for solving a variety of applied problems in mathematical science 

and engineering. There are great number of generalizations of the  Banach contraction principle. 

Bhaskar and Lakshmikantham [1] introduced the notion of coupled fixed point and prove some coupled 

fixed point results under certain conditions, in a complete metric space endowed with a partial order. 

Later, Lakshmikantham and Ciric [2] extended these results by defining the  mixed g- monotone 

property. More accurately, they proved coupled coincidence and coupled common fixed point theorems 

for a  mixed g- monotone mapping in a complete metric space endowed with partial order. Karapiner 
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[3] generalized these results on a complete cone metric space endowed with a partial order. For other 

results on coupled fixed point theory, we refers  [4 - 14]. 

 Beside this, in [15] Alber and Guerre - Delabriere  presented the generalization of Banach 

contraction principle by introducing the concept of weak contraction in Hilbert spaces. Rhoades [16] 

had shown the result of [15] is also valid in complete metric spaces. Khan et.al. [17] introduced the use 

of control function in metric fixed point problems. This function was referred to as 'Altering distance 

function' by the authors of [17]. This function and its extensions have been used in several problems of 

fixed point theory; some of them are noted in [18-21]. In recent times, fixed point theory has developed 

rapidly in partially ordered metric spaces, that is, in metric spaces endowed with a partial ordering. 

Using the control functions the weak contraction principle has been generalized in metric spaces [9] 

and in partially ordered metric spaces in [11].  

  

 Recently, Samet and Vetro [14] introduced the notion of fixed point of  N- order, as natural 

extension of the coupled fixed point and established some new coupled fixed point theorems in complete 

metric spaces, using a new concept of  F- invariant set. Later, Berinde and Borcut [22] obtained 

existence and uniqueness of triplet fixed point results in a complete metric space, endowed with a 

partial order. 

Now we recall come previous known definitions and results which are as follows. 

Again, let (𝑋, ≤) be a partially ordered set. The mapping  𝐹: 𝑋3 →  𝑋 is said to have the mixed monotone 

property if for any 𝑥, 𝑦, 𝑧 ∈  𝑋.   

i. 𝑥1, 𝑥2 ∈  𝑋, 𝑥1 ≤  𝑥2 ⇒  𝐹(𝑥1, 𝑦, 𝑧)  ≤  𝐹(𝑥2, 𝑦, 𝑧) , 

ii.  𝑦1, 𝑦2 ∈  𝑋, 𝑦1 ≥  𝑦2 ⇒  𝐹(𝑥, 𝑦1, 𝑧) ≥ 𝐹(𝑥, 𝑦2, 𝑧)  , 

iii. 𝑧1, 𝑧2 ∈  𝑋, 𝑧1 ≤  𝑧2 ⇒  𝐹(𝑥, 𝑦, 𝑧1)  ≤  𝐹(𝑥, 𝑦, 𝑧2)  

An element (𝑥, 𝑦, 𝑧) ∈  𝑋3 is called a triplet fixed point of F if 

𝐹(𝑥, 𝑦, 𝑧)  =   𝑥,   𝐹(𝑦, 𝑥, 𝑦) =  𝑦, 𝑎𝑛𝑑  𝐹(𝑧, 𝑦, 𝑥) =  𝑧.  

Berinde and Borcut [22] proved the following theorem. 

Theorem 1.1:-  Let (𝑋, ≤) be a partially ordered set and (X,d) be a complete metric space. Let 𝐹 ∶  𝑋3 →

 𝑋 be a continuous mapping having the mixed monotone property on X. Assume that there exist 

constants  𝑎, 𝑏, 𝑐 ∈  [0,1) such that  𝑎 +  𝑏 +  𝑐  <  1 for which, 

     𝑑(𝐹(𝑥, 𝑦, 𝑧), 𝐹(𝑢, 𝑣, 𝑤))  ≤  𝑎 𝑑(𝑥, 𝑢)  +  𝑏 𝑑(𝑦, 𝑣)  +  𝑐 𝑑(𝑧, 𝑤)   1.1 

For all  𝑥 ≥  𝑢, 𝑦 ≤  𝑣, 𝑧 ≥  𝑤. Assume either,  

1. F is continuous, 

2. X has the following properties: 

 if non decreasing sequence 𝑥𝑛 →  𝑥,  then 𝑥𝑛  ≤  𝑥  for all n, 

 if non increasing sequence 𝑦𝑛 →  𝑦,  then 𝑦𝑛 ≥  𝑥  for all n, 
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If there exist  𝑥0, 𝑦0, 𝑧0 ∈ 𝑋 such that 

𝑥0  ≤  𝐹(𝑥0, 𝑦0, 𝑧0), 𝑦0 ≥  𝐹(𝑦0, 𝑥0, 𝑦0), 𝑎𝑛𝑑  𝑧0  ≤  𝐹(𝑧0, 𝑦0, 𝑥0)  

Then there exist  𝑥, 𝑦, 𝑧 ∈  𝑋 such that, 

  𝐹(𝑥, 𝑦, 𝑧)  =  𝑥, 𝐹(𝑦, 𝑥, 𝑦)  =  𝑦, 𝑎𝑛𝑑 𝐹(𝑧, 𝑦, 𝑥)  =  𝑧  

 In  [Abbas, Aydi and Krapinar, Triplet fixed point in partially ordered metric spaces, 

submitted]. In this respect, let (𝑋, ≤) be a partially ordered set,   𝐹: 𝑋3 →  𝑋 and 𝑔 ∶  𝑋 →  𝑋 two 

mappings.  The mapping F is said to have the  mixed g - monotone property if for any x, y, z ∈ X.   

i. 𝑥1, 𝑥2 ∈ 𝑋, 𝑔𝑥1 ≤  𝑔𝑥2 ⇒  𝐹(𝑥1, 𝑦, 𝑧)  ≤  𝐹(𝑥2, 𝑦, 𝑧) , 

ii. 𝑦1, 𝑦2 ∈  𝑋, 𝑔𝑦1 ≥  𝑔𝑦2 ⇒  𝐹(𝑥, 𝑦1, 𝑧) ≥  𝐹(𝑥, 𝑦2, 𝑧)  , 

iii. 𝑧1, 𝑧2 ∈  𝑋, 𝑔𝑧1 ≤  𝑔𝑧2 ⇒  𝐹(𝑥, 𝑦, 𝑧1)  ≤  𝐹(𝑥, 𝑦, 𝑧2)  

An element (𝑥, 𝑦, 𝑧) ∈   𝑋3 is called a triplet  coincidence point of F and g if 

   𝐹(𝑥, 𝑦, 𝑧)   =   𝑔𝑥,   𝐹(𝑦, 𝑥, 𝑦)  =  𝑔𝑦, 𝑎𝑛𝑑  𝐹(𝑧, 𝑦, 𝑥)  =  𝑔𝑧.  

while (𝑔𝑥, 𝑔𝑦, 𝑔𝑧) is said a triplet point of coincidence of mappings F and g. Moreover (𝑥, 𝑦, 𝑧) is called 

a triplet common fixed point of 𝐹 and 𝑔 if 

  𝐹(𝑥, 𝑦, 𝑧)   =   𝑔𝑥,   𝐹(𝑦, 𝑥, 𝑦)  =  𝑔𝑦, 𝑎𝑛𝑑  𝐹(𝑧, 𝑦, 𝑥)  =  𝑔𝑧.  

At last mappings 𝐹 and 𝑔 are called commutative if 

  𝑔(𝐹(𝑥, 𝑦, 𝑧))  =  𝐹(𝑔𝑥, 𝑔𝑦, 𝑔𝑧),  ∀ 𝑥, 𝑦, 𝑧 ∈  𝑋 

In the same paper, they proved the following result. 

Theorem 1.2:- Let (𝑋, ≤) be a partially ordered set and (𝑋, 𝑑) be a complete metric space. Assume 

there is a function 𝜑: [0, ∞) →  [0, ∞)  such that  𝜑(𝑡)  <  𝑡 𝑓or each  𝑡 >  0. Also suppose that 𝐹 ∶

 𝑋3 →  𝑋 and 𝑔 ∶  𝑋 →  𝑋  are such that 𝐹 having the mixed 𝑔 − monotone property on 𝑋. Assume that 

there exist constants  𝑎, 𝑏, 𝑐 ∈  [0,1) such that  𝑎 +  2𝑏 +  𝑐  <  1 such that, 

 𝑑(𝐹(𝑥, 𝑦, 𝑧), 𝐹(𝑢, 𝑣, 𝑤))  ≤   𝜑 (𝑎 𝑑(𝑔𝑥, 𝑔𝑢) +  𝑏 𝑑(𝑔𝑦, 𝑔𝑣) +  𝑐 𝑑(𝑔𝑧, 𝑔𝑤))  1.2 

for all  𝑔𝑥 ≥  𝑔𝑢, 𝑔𝑦 ≤  𝑔𝑣, 𝑔𝑧 ≥  𝑔𝑤. 

Suppose (𝑋3) ⊂  𝑔(𝑋) , g is continuous and commutes with F. Suppose either, 

1.  F is continuous, 

2.  X has the following properties: 

 if non decreasing sequence 𝑔𝑥𝑛 →  𝑥,  then 𝑔𝑥𝑛  ≤  𝑥  for all n, 

  if non increasing sequence 𝑔𝑦𝑛 →  𝑦,  then 𝑔𝑦𝑛 ≥  𝑦  for all n, 

If there exist  𝑥0, 𝑦0, 𝑧0 ∈  𝑋 such that  

  𝑔𝑥0  ≤  𝐹(𝑥0, 𝑦0, 𝑧0), 𝑔𝑦0 ≥  𝐹(𝑦0, 𝑥0, 𝑦0), 𝑎𝑛𝑑  𝑔𝑧0  ≤  𝐹(𝑧0, 𝑦0, 𝑥0) . 

Then there exist  𝑥, 𝑦, 𝑧 ∈  𝑋 such that, 

  𝐹(𝑥, 𝑦, 𝑧)  =  𝑔𝑥, 𝐹(𝑦, 𝑥, 𝑦)  =  𝑔𝑦, 𝑎𝑛𝑑 𝐹(𝑧, 𝑦, 𝑥)  =  𝑔𝑧  

that is, F and g have a triplet coincidence point. 

 In [23] Aydi et.al. prove the following theorem 
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Theorem 1.3:- Let (𝑋, ≤) be a partially ordered set and (𝑋, 𝑑) be a complete metric space. Assume 

there is a function 𝜑: [0, ∞)  →  [0, ∞)  such that  𝜑(𝑡)  <  𝑡 for each  𝑡 >  0. Also suppose that 𝐹 ∶

 𝑋3 →  𝑋 and 𝑔 ∶  𝑋 →  𝑋  are such that F having the mixed g -  monotone property on X. Assume that 

there exist constants  𝑎, 𝑏, 𝑐 ∈  [0,1) such that  𝑎 +  2𝑏 +  𝑐  <  1 such that, 

𝑑(𝐹(𝑥, 𝑦, 𝑧), 𝐹(𝑢, 𝑣, 𝑤)) +  𝑑(𝐹(𝑦, 𝑥, 𝑦), 𝐹(𝑣, 𝑢, 𝑣)) +   𝑑(𝐹(𝑧, 𝑦, 𝑥), 𝐹(𝑤, 𝑣, 𝑢))   

    ≤  3 𝜑 (
 𝑑(𝑔𝑥,𝑔𝑢)+  𝑑(𝑔𝑦,𝑔𝑣)+  𝑑(𝑔𝑧,𝑔𝑤)

3
 )     1.3 

For all  𝑔𝑥 ≥  𝑔𝑢, 𝑔𝑦 ≤  𝑔𝑣, 𝑔𝑧 ≥  𝑔𝑤. 

Suppose 𝐹(𝑋3) ⊂  𝑔(𝑋) , g is continuous and commutes with F. Suppose either, 

1. F is continuous, 

2.  X has the following properties: 

 if non decreasing sequence 𝑔𝑥𝑛  →  𝑥,  then 𝑔𝑥𝑛  ≤  𝑥  for all 𝑛, 

 if non increasing sequence 𝑔𝑦𝑛  →  𝑦,  then 𝑔𝑦𝑛  ≥  𝑦  for all 𝑛,  

If there exist  𝑥0 , 𝑦0, 𝑧0  ∈  𝑋 such that 

  𝑔𝑥0  ≤  𝐹(𝑥0, 𝑦0, 𝑧0), 𝑔𝑦0  ≥  𝐹(𝑦0, 𝑥0, 𝑦0), 𝑎𝑛𝑑  𝑔𝑧0  ≤  𝐹(𝑧0, 𝑦0, 𝑥0)  

Then there exist  𝑥, 𝑦, 𝑧 ∈  𝑋 such that, 

  𝐹(𝑥, 𝑦, 𝑧)  =  𝑔𝑥, 𝐹(𝑦, 𝑥, 𝑦)  =  𝑔𝑦, 𝑎𝑛𝑑 𝐹(𝑧, 𝑦, 𝑥)  =  𝑔𝑧  

that is, F and g have a triplet coincidence point. 

The purpose of this paper is to present some triplet fixed point theorems for a g - monotone mapping in 

partially ordered metric space which are generalization of the results of Berinde and Borcut [22] and 

many more privious known results.  

Main Results 

First we give some definitions, which are use to prove of the main theorem. 

Definition 2.1 :- Let Φ denote all functions 𝜑: [0, ∞)  →  [0, ∞)  which satisfy 

i.  𝜑  is continuous and non decreasing, 

ii.  𝜑 (𝑡)  =  0  iff t = 0, 

iii.  𝜑 (𝑟 +  𝑠 +  𝑡) ≤   𝜑(𝑟) +  𝜑(𝑠) +  𝜑(𝑡) ∀  𝑟, 𝑠, 𝑡 ∈  [0, ∞)  

For example, functions 𝜑1(𝑡)  =  𝑘𝑡  where 𝑘 >  0, 𝜑2(𝑡) =
𝑡

𝑡+1
 , 𝜑3(𝑡)  =  𝐼𝑛(𝑡 + 1),  and 𝜑4(𝑡) =

 𝑚𝑖𝑛 {𝑡, 1}   are in Φ. 

Definition 2.2:- Let Ψ be the set of all functions 𝜓 ∶  [0, ∞)  →  [0, ∞)  which satisfy 𝑙𝑖𝑚𝑡 → 𝑞𝜓(𝑡)  >  0  

for all  𝑞 >  0 and 𝑙𝑖𝑚𝑡 → 0  𝜓(𝑡)  =  0  

For example, functions 𝜓1(𝑡)  =  𝑘𝑡 where 𝑘 >  0, 𝜓2 (𝑡) =
𝑙𝑛(2𝑡+1)

2
  are in Ψ. 

Now we prove our main results. 
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Theorem 2.3:- Let (𝑋, ≤) be a partially ordered set and (X,d) be a complete metric space. Let 𝐹 ∶  𝑋3  →

 𝑋 be a continuous mapping having the mixed g - monotone property on X and 𝐹(𝑋3) ⊂  𝑔(𝑋) . Suppose 

there exist  𝜇, 𝜑 ∈ Φ , 𝜓 ∈ Ψ for which, 

 𝜇 (𝑑(𝐹(𝑥, 𝑦, 𝑧), 𝐹(𝑢, 𝑣, 𝑤)))  ≤
1

3
𝜑( 𝑑(𝑔𝑥, 𝑔𝑢) +   𝑑(𝑔𝑦, 𝑔𝑣) +   𝑑(𝑔𝑧, 𝑔𝑤)) 

     −
1

3
 𝜓( 𝑑(𝑔𝑥, 𝑔𝑢) +   𝑑(𝑔𝑦, 𝑔𝑣) +   𝑑(𝑔𝑧, 𝑔𝑤))  2.1 

For all  𝑔𝑥 ≥  𝑔𝑢, 𝑔𝑦 ≤  𝑔𝑣  𝑎𝑛𝑑  𝑔𝑧 ≥  𝑔𝑤. 

Assume that F is continuous, g is continuous and commutes with F. If there exist  𝑥0, 𝑦0, 𝑧0  ∈  𝑋 such 

that 

 𝑔𝑥0  ≤  𝐹(𝑥0, 𝑦0, 𝑧0), 𝑔𝑦0  ≥  𝐹(𝑦0, 𝑥0, 𝑦0), 𝑎𝑛𝑑  𝑔𝑧0  ≤  𝐹(𝑧0, 𝑦0, 𝑥0)  

Then there exist  𝑥, 𝑦, 𝑧 ∈  𝑋 such that, 

  𝐹(𝑥, 𝑦, 𝑧)  =  𝑔𝑥, 𝐹(𝑦, 𝑥, 𝑦)  =  𝑔𝑦, 𝑎𝑛𝑑 𝐹(𝑧, 𝑦, 𝑥)  =  𝑔𝑧.  

That is, F and g have a triplet coincidence point. 

Proof:  Let  𝑥0 , 𝑦0, 𝑧0  ∈  𝑋 such that  

 𝑔𝑥0  ≤  𝐹(𝑥0, 𝑦0, 𝑧0), 𝑔𝑦0  ≥  𝐹(𝑦0, 𝑥0, 𝑦0), 𝑎𝑛𝑑  𝑔𝑧0  ≤  𝐹(𝑧0, 𝑦0, 𝑥0)  

We can choose  𝑥1 , 𝑦1, 𝑧1  ∈  𝑋 such that 

 𝑔𝑥1  =  𝐹(𝑥0, 𝑦0, 𝑧0), 𝑔𝑦1  =  𝐹(𝑦0, 𝑥0, 𝑦0), 𝑎𝑛𝑑  𝑔𝑧1  =  𝐹(𝑧0, 𝑦0, 𝑥0)   2.2 

This can be done because  𝐹(𝑋3) ⊂  𝑔(𝑋) .  Continuing this process, we construct a sequence  {𝑥𝑛}, {𝑦𝑛} 

𝑎𝑛𝑑  {𝑧𝑛} in X such that 

 𝑔𝑥𝑛+1  =   𝐹(𝑥𝑛, 𝑦𝑛, 𝑧𝑛), 𝑔𝑦𝑛+1  =   𝐹(𝑦𝑛, 𝑥𝑛 , 𝑦𝑛), 𝑎𝑛𝑑  𝑔𝑧𝑛+1  =   𝐹(𝑧𝑛, 𝑦𝑛, 𝑥𝑛)  2.3 

By induction, we will prove that 

 𝑔𝑥𝑛  ≤   𝑔𝑥𝑛+1, 𝑔𝑦𝑛  ≥   𝑔𝑦𝑛+1  𝑎𝑛𝑑  𝑔𝑧𝑛  ≤   𝑔𝑧𝑛+1     2.4 

Since,  

 𝑔𝑥0  ≤  𝐹(𝑥0, 𝑦0, 𝑧0), 𝑔𝑦0  ≥  𝐹(𝑦0, 𝑥0, 𝑦0), 𝑎𝑛𝑑  𝑔𝑧0  ≤  𝐹(𝑧0, 𝑦0, 𝑥0)   2.5 

therefore by (2.2)  we have 

 𝑔𝑥0  ≤   𝑔𝑥1, 𝑔𝑦0  ≥   𝑔𝑦1  𝑎𝑛𝑑  𝑔𝑧0  ≤   𝑔𝑧1  

Thus (2.4) is true for n = 0. We suppose that (2.4) is true for  some  𝑛 >  0. Since  F has the mixed g - 

monotone property, by (2.4) we have that 

 𝑔𝑥𝑛+1  =  𝐹(𝑥𝑛, 𝑦𝑛, 𝑧𝑛)  ≤  𝐹(𝑥𝑛+1, 𝑦𝑛, 𝑧𝑛)  

    ≤  𝐹(𝑥𝑛+1, 𝑦𝑛, 𝑧𝑛+1)    ≤  𝐹(𝑥𝑛+1, 𝑦𝑛+1, 𝑧𝑛+1)   =  𝑔𝑥𝑛+2   

  𝑔𝑦𝑛+2  =  𝐹(𝑦𝑛+1, 𝑥𝑛+1, 𝑦𝑛+1)  ≥  𝐹(𝑦𝑛+1, 𝑥𝑛, 𝑦𝑛+1)  

    ≥  𝐹(𝑦𝑛, 𝑥𝑛 , 𝑦𝑛+1)    ≥  𝐹(𝑦𝑛, 𝑥𝑛, 𝑦𝑛)   =  𝑔𝑦𝑛+1 

and 

 𝑔𝑧𝑛+1  =  𝐹(𝑧𝑛, 𝑦𝑛, 𝑥𝑛)  ≤  𝐹(𝑧𝑛+1, 𝑦𝑛, 𝑥𝑛)  

    ≤  𝐹(𝑧𝑛+1, 𝑦𝑛+1, 𝑥𝑛)    ≤  𝐹(𝑧𝑛+1, 𝑦𝑛+1, 𝑥𝑛+1)   =  𝑔𝑧𝑛+2 

That is (2.4) is true for any  𝑛 ∈  𝑁. If for some 𝑘 ∈  𝑁, 
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 𝑔𝑥𝑘  =   𝑔𝑥𝑘+1, 𝑔𝑦𝑘  =   𝑔𝑦𝑘+1  𝑎𝑛𝑑  𝑔𝑧𝑘  =   𝑔𝑧𝑘+1  

then, by(2.3) (𝑥𝑘 , 𝑦𝑘, 𝑧𝑘) is a triplet coincidence point of F and g. From now on, we assume that at least 

 𝑔𝑥𝑛 ≠   𝑔𝑥𝑛+1, 𝑔𝑦𝑛 ≠   𝑔𝑦𝑛+1  𝑎𝑛𝑑  𝑔𝑧𝑛 ≠   𝑔𝑧𝑛+1     2.5 

for any 𝑛 ∈  𝑁. From (2.4) and the inequality (2.1), we have 

  𝑑(𝑔𝑥𝑛+1, 𝑔𝑥𝑛)  =  𝑑(𝐹(𝑥𝑛, 𝑦𝑛, 𝑧𝑛), 𝐹(𝑥𝑛−1, 𝑦𝑛−1, 𝑧𝑛−1))   

 𝜇 (𝑑(𝐹(𝑥𝑛, 𝑦𝑛, 𝑧𝑛), 𝐹(𝑥𝑛−1, 𝑦𝑛−1, 𝑧𝑛−1)))   

   ≤
1

3
𝜑( 𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛−1) +   𝑑(𝑔𝑦𝑛, 𝑔𝑦𝑛−1) +   𝑑(𝑔𝑧𝑛, 𝑔𝑧𝑛−1))    

    −
1

3
 𝜓( 𝑑(𝑔𝑥𝑛 , 𝑔𝑥𝑛−1) +   𝑑(𝑔𝑦𝑛, 𝑔𝑦𝑛−1) +   𝑑(𝑔𝑧𝑛, 𝑔𝑧𝑛−1)) 

 𝜇 (𝑑(𝑔𝑥𝑛+1, 𝑔𝑥𝑛))   ≤  
1

3
𝜑( 𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛−1) +   𝑑(𝑔𝑦𝑛, 𝑔𝑦𝑛−1) +   𝑑(𝑔𝑧𝑛, 𝑔𝑧𝑛−1))   

    −
1

3
 𝜓( 𝑑(𝑔𝑥𝑛 , 𝑔𝑥𝑛−1) +   𝑑(𝑔𝑦𝑛, 𝑔𝑦𝑛−1) +  𝑑(𝑔𝑧𝑛, 𝑔𝑧𝑛−1))  2.6 

Similarly we get 

 𝜇(𝑑(𝑔𝑦𝑛+1, 𝑔𝑦𝑛))  ≤  
1

3
𝜑( 𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛−1) +   𝑑(𝑔𝑦𝑛, 𝑔𝑦𝑛−1) +   𝑑(𝑔𝑦𝑛, 𝑔𝑦𝑛−1))   

    −
1

3
𝜓( 𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛−1) +   𝑑(𝑔𝑦𝑛, 𝑔𝑦𝑛−1) +  𝑑(𝑔𝑦𝑛, 𝑔𝑦𝑛−1))  2.7 

 𝜇 (𝑑(𝑔𝑧𝑛+1, 𝑔𝑧𝑛))  ≤  
1

3
𝜑( 𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛−1) +   𝑑(𝑔𝑦𝑛, 𝑔𝑦𝑛−1) +   𝑑(𝑔𝑧𝑛, 𝑔𝑧𝑛−1))   

    −
1

3
𝜓( 𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛−1) +   𝑑(𝑔𝑦𝑛, 𝑔𝑦𝑛−1) +  𝑑(𝑔𝑧𝑛, 𝑔𝑧𝑛−1))  2.8 

For each  𝑛 ≥  1.  

By adding (2.6), (2.7) and (2.8) and from the property of \mu we get 

 𝜇 (𝐻(𝑥𝑛, 𝑦𝑛, 𝑧𝑛))  ≤  𝜑(𝐻(𝑥𝑛, 𝑦𝑛, 𝑧𝑛))  − 𝜓 (𝐻(𝑥𝑛−1, 𝑦𝑛−1, 𝑧𝑛−1))   2.9 

where 

 𝐻(𝑥𝑛 , 𝑦𝑛, 𝑧𝑛)  =  𝑑(𝑔(𝑥𝑛), 𝑔(𝑥𝑛+1))   +  𝑑(𝑔(𝑦𝑛), 𝑔(𝑦𝑛+1))   +  𝑑(𝑔(𝑧𝑛), 𝑔(𝑧𝑛+1))    

or 

 𝐻(𝑥𝑛 , 𝑦𝑛, 𝑧𝑛)  =  𝑑(𝐹(𝑥𝑛, 𝑦𝑛, 𝑧𝑛), 𝐹(𝑥𝑛−1, 𝑦𝑛−1, 𝑧𝑛−1))    

   + 𝑑(𝐹(𝑦𝑛, 𝑥𝑛, 𝑦𝑛), 𝐹(𝑦𝑛−1, 𝑥𝑛−1, 𝑦𝑛−1))   

    + 𝑑(𝐹(𝑧𝑛, 𝑦𝑛, 𝑥𝑛), 𝐹(𝑧𝑛−1, 𝑦𝑛−1, 𝑥𝑛−1))     

Using the fact of 𝜇, 𝜑  are non decreasing, we get 

   𝐻(𝑥𝑛 , 𝑦𝑛, 𝑧𝑛)  ≤  𝐻(𝑥𝑛−1, 𝑦𝑛−1, 𝑧𝑛−1)  

We set, 

 𝛿𝑛  =  𝐻(𝑥𝑛−1, 𝑦𝑛−1, 𝑧𝑛−1)  =  𝑑(𝑔𝑥𝑛 , 𝑔𝑥𝑛−1)  +   𝑑(𝑔𝑦𝑛, 𝑔𝑦𝑛−1)  +   𝑑(𝑔𝑧𝑛, 𝑔𝑧𝑛−1) 2.10 

then the sequence {𝛿𝑛 } is decreasing. Therefore, there is some 𝛿 ≥  0  such that 

 𝑙𝑖𝑚𝑛 → ∞  𝛿𝑛  =  𝑙𝑖𝑚𝑛 → ∞  ( 𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛−1) +   𝑑(𝑔𝑦𝑛, 𝑔𝑦𝑛−1) +   𝑑(𝑔𝑧𝑛, 𝑔𝑧𝑛−1))  

  = 𝛿                     2.11 
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We shall show that 𝛿 =  0. Suppose, to the contrary, that 𝛿 >  0. Then taking the limit as 𝑛 →  ∞ of 

both sides of (2.9) and have in mind that we suppose 𝑙𝑖𝑚𝑛 → 𝑞  𝜓(𝑡)  >  0 for all  𝑞 >  0 and 𝜇, 𝜑  are 

continuous, we have 

  𝜇(𝛿)  =  𝑙𝑖𝑚𝑛 → ∞ 𝜑(𝛿𝑛)  

  𝑙𝑖𝑚𝑛 → ∞ 𝜇 (𝛿𝑛)  ≤   𝑙𝑖𝑚𝑛 → ∞  ( 𝜑(𝛿𝑛−1)  − 𝜓(𝛿𝑛−1))   ≤ 𝜇(𝛿)  

a contradiction. Thus 𝛿 =  0, that is  

𝑙𝑖𝑚𝑛 → ∞ 𝛿𝑛  =  𝑙𝑖𝑚𝑛 → ∞ ( 𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛−1) +   𝑑(𝑔𝑦𝑛, 𝑔𝑦𝑛−1) +   𝑑(𝑔𝑧𝑛, 𝑔𝑧𝑛−1))  =  0              2.12 

In what follows, we shall prove that {𝑔𝑥𝑛}, {𝑔𝑦𝑛} 𝑎𝑛𝑑 {𝑔𝑧𝑛} are Cauchy sequences. Suppose, to the 

contrary, that atleast one of {𝑔𝑥𝑛} {𝑔𝑦𝑛}, {𝑔𝑧𝑛}  𝑖n not Cauchy sequence. Then there exists an  𝜖 >  0 

for which we can find subsequence {𝑔𝑥𝑛(𝑘) }  , {𝑔𝑥𝑚(𝑘)}of {𝑔𝑥𝑛}and  {𝑔𝑦𝑛(𝑘)}, {𝑔𝑦𝑚(𝑘)}   of {𝑔𝑦𝑛}  and 

 {𝑔𝑧𝑛(𝑘)}, {𝑔𝑧𝑚(𝑘)}of {𝑔𝑧𝑛} 𝑤𝑖𝑡ℎ  𝑛(𝑘)  >  𝑚(𝑘)  ≥  𝑘 such that 

 𝑑(𝑔𝑥𝑛(𝑘), 𝑔𝑥𝑚(𝑘))  +   𝑑(𝑔𝑦𝑛(𝑘), 𝑔𝑦𝑚(𝑘))  +   𝑑(𝑔𝑧𝑛(𝑘), 𝑔𝑧𝑚(𝑘))  ≥ 𝜖   2.13 

Additionally correspondence to 𝑚(𝑘). we may choose 𝑛(𝑘) such that it is the smallest integer satisfying 

(2.13) and 𝑛(𝑘)  >  𝑚(𝑘)  ≥  𝑘. Thus 

 𝑑(𝑔𝑥𝑛(𝑘)−1, 𝑔𝑥𝑚(𝑘))  +   𝑑(𝑔𝑦𝑛(𝑘)−1, 𝑔𝑦𝑚(𝑘))  +   𝑑(𝑔𝑧𝑛(𝑘)−1, 𝑔𝑧𝑚(𝑘))  < 𝜖  2.14 

By using triangle inequality and having in mind of (2.13) and (2.14) 

𝜖 ≤  𝑝𝑘  =   𝑑(𝑔𝑥𝑛(𝑘), 𝑔𝑥𝑚(𝑘))  +   𝑑(𝑔𝑦𝑛(𝑘), 𝑔𝑦𝑚(𝑘))  +   𝑑(𝑔𝑧𝑛(𝑘), 𝑔𝑧𝑚(𝑘))  

 ≤   𝑑(𝑔𝑥𝑛(𝑘), 𝑔𝑥𝑛(𝑘)−1)  +   𝑑(𝑔𝑦𝑛(𝑘)−1, 𝑔𝑦𝑚(𝑘))  +   𝑑(𝑔𝑧𝑛(𝑘), 𝑔𝑧𝑛(𝑘)−1)  

   + 𝑑(𝑔𝑦𝑛(𝑘)− 1, 𝑔𝑦𝑚(𝑘))  +   𝑑(𝑔𝑧𝑛(𝑘), 𝑔𝑧𝑛(𝑘)−1) +   𝑑(𝑔𝑧𝑛(𝑘)−1, 𝑔𝑧𝑚(𝑘))  

  <   𝑑(𝑔𝑥𝑛(𝑘), 𝑔𝑥𝑛(𝑘)−1)  +  𝑑(𝑔𝑦𝑛(𝑘), 𝑔𝑦𝑛(𝑘)−1)  +   𝑑(𝑔𝑧𝑛(𝑘), 𝑔𝑧𝑛(𝑘)−1)  + 𝜖  2.15 

letting  𝑘 →  ∞  in (2.15) and using (2.12) 

𝑙𝑖𝑚 𝑘 → ∞ 𝑝𝑘  =  𝑙𝑖𝑚 𝑘 → ∞ (𝑑(𝑔𝑥𝑛(𝑘), 𝑔𝑥𝑚(𝑘))  +   𝑑(𝑔𝑦𝑛(𝑘), 𝑔𝑦𝑚(𝑘))  +   𝑑(𝑔𝑧𝑛(𝑘), 𝑔𝑧𝑚(𝑘)))   

𝑙𝑖𝑚 𝑘 → ∞𝑝𝑘   =   𝜖         2.16 

Again by triangular inequality, 

 𝑝𝑘 =   𝑑(𝑔𝑥𝑛(𝑘), 𝑔𝑥𝑚(𝑘))  +   𝑑(𝑔𝑦𝑛(𝑘), 𝑔𝑦𝑚(𝑘))  +   𝑑(𝑔𝑧𝑛(𝑘), 𝑔𝑧𝑚(𝑘)) 

 ≤   𝑑(𝑔𝑥𝑛(𝑘), 𝑔𝑥𝑛(𝑘)+1)  +   𝑑(𝑔𝑥𝑛(𝑘)+1, 𝑔𝑥𝑚(𝑘)+1)  +   𝑑(𝑔𝑥𝑚(𝑘)+1, 𝑔𝑥𝑚(𝑘)) 

   𝑑(𝑔𝑦𝑛(𝑘), 𝑔𝑦𝑛(𝑘)+1)  +   𝑑(𝑔𝑦𝑛(𝑘)+1, 𝑔𝑦𝑚(𝑘)+1)  +   𝑑(𝑔𝑦𝑚(𝑘)+1, 𝑔𝑦𝑚(𝑘)) 

   𝑑(𝑔𝑧𝑛(𝑘), 𝑔𝑧𝑛(𝑘)+1)  +   𝑑(𝑔𝑧𝑛(𝑘)+1, 𝑔𝑧𝑚(𝑘)+1)  +   𝑑(𝑔𝑧𝑚(𝑘)+1, 𝑔𝑧𝑚(𝑘))  

 ≤  𝛿𝑛(𝑘)+1  +  𝛿𝑚(𝑘)+1  +   𝑑(𝑔𝑥𝑛(𝑘)+1, 𝑔𝑥𝑚(𝑘)+1)  

   +  𝑑(𝑔𝑦𝑛(𝑘)+1, 𝑔𝑦𝑚(𝑘)+1) +   𝑑(𝑔𝑧𝑛(𝑘)+1, 𝑔𝑧𝑚(𝑘)+1)    2.17 

Since 𝑛(𝑘)  >  𝑚(𝑘) , then 

  𝑔𝑥𝑛(𝑘)  ≥  𝑔𝑥𝑚(𝑘) ,   𝑔𝑦𝑛(𝑘)  ≤  𝑔𝑦𝑚(𝑘) , 𝑔𝑧𝑛(𝑘) ≥  𝑔𝑧𝑚(𝑘)   2.18 

Take (2.18) in (2.1) to get, 
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 𝑑(𝑔𝑥𝑛(𝑘)+1, 𝑔𝑥𝑚(𝑘)+1)  +   𝑑(𝑔𝑦𝑛(𝑘)+1, 𝑔𝑦𝑚(𝑘)+1)  +   𝑑(𝑔𝑧𝑛(𝑘)+1, 𝑔𝑧𝑚(𝑘)+1)  

    =  𝑑 (𝐹(𝑥𝑛(𝑘), 𝑦𝑛(𝑘), 𝑧𝑛(𝑘)), 𝐹(𝑥𝑚(𝑘), 𝑦𝑚(𝑘), 𝑧𝑚(𝑘)))     

    + 𝑑 (𝐹(𝑦𝑛(𝑘), 𝑥𝑛(𝑘), 𝑦𝑛(𝑘)), 𝐹(𝑦𝑚(𝑘), 𝑥𝑚(𝑘), 𝑦𝑚(𝑘)))   

    + 𝑑 (𝐹(𝑧𝑛(𝑘), 𝑦𝑛(𝑘), 𝑥𝑛(𝑘)), 𝐹(𝑧𝑚(𝑘), 𝑦𝑚(𝑘), 𝑥𝑚(𝑘)))     

This implies,and using the property of φ we get, 

𝜇 (𝑝𝑘)  ≤  𝜑(𝛿𝑛(𝑘)+1)   +   𝜑(𝛿𝑚(𝑘)+1)  +  𝜑(𝑝𝑘)  − 𝜓(𝑝𝑘)  

Letting  𝑘 →  ∞  and having in mind (2.10) and (2.14), we get 

𝜇 (𝜖)   ≤   𝜑 (0)  +   𝜑 (𝜖)  −  𝑙𝑖𝑚𝑘 → ∞ 𝜓 (𝑝𝑘)  <   𝜑 (𝜖)  

Which contradiction. This shows that {𝑔𝑥𝑛}, {𝑔𝑦𝑛}𝑎𝑛𝑑 {𝑔𝑧𝑛}are Cauchy sequences. Since X is a 

complete metric space, there exist 𝑥, 𝑦, 𝑧 ∈  𝑋 such that 

 𝑙𝑖𝑚𝑛 → ∞ {𝑔𝑥𝑛} =  𝑥 ,   𝑙𝑖𝑚𝑛 → ∞ {𝑔𝑦𝑛} =  𝑦 ,  𝑙𝑖𝑚𝑛 → ∞ {𝑔𝑧𝑛} =  𝑧   2.19 

From (2.19) and the continuity of g, 

 𝑙𝑖𝑚𝑛 → ∞ {𝑔(𝑔𝑥𝑛)} =  𝑔𝑥 , 𝑖𝑚𝑛 → ∞ {𝑔(𝑔𝑦𝑛)} =  𝑔𝑦 , 𝑙𝑖𝑚𝑛 → ∞ {𝑔(𝑔𝑧𝑛)} =  𝑔𝑧  2.20 

From the commutativity of F and g, we have 

  𝑔(𝑔𝑥𝑛+1)  =  𝑔(𝐹(𝑥𝑛, 𝑦𝑛, 𝑧𝑛))  =  𝐹(𝑔𝑥𝑛 , 𝑔𝑦𝑛, 𝑔𝑧𝑛)  

   𝑔(𝑔𝑦𝑛+1)  =  𝑔(𝐹(𝑦𝑛, 𝑥𝑛, 𝑦𝑛))  =  𝐹(𝑔𝑦𝑛, 𝑔𝑥𝑛, 𝑔𝑦𝑛)  

   𝑔(𝑔𝑧𝑛+1)  =  𝑔(𝐹(𝑧𝑛, 𝑦𝑛, 𝑥𝑛))  =  𝐹(𝑔𝑧𝑛, 𝑔𝑦𝑛, 𝑔𝑥𝑛)    2.21 

Now we shall show that 

  𝑔𝑥 =  𝐹(𝑥, 𝑦, 𝑧), 𝑔𝑦 =  𝐹(𝑦, 𝑥, 𝑦), 𝑎𝑛𝑑   𝑔𝑧 =  𝐹(𝑧, 𝑦, 𝑥)  

Suppose that F is continuous. Letting  𝑛 →  ∞  in (2.21), therefore by  (2.19) and (2.20) we obtain 

  𝑔𝑥 =  𝑙𝑖𝑚𝑛 → ∞ {𝑔(𝑔𝑥𝑛)} =   𝑙𝑖𝑚𝑛 → ∞𝐹(𝑔𝑥𝑛, 𝑔𝑦𝑛, 𝑔𝑧𝑛)  =  𝐹(𝑥, 𝑦, 𝑧)   

   𝑔𝑦 =  𝑙𝑖𝑚𝑛 → ∞ {𝑔(𝑔𝑦𝑛)} =   𝑙𝑖𝑚𝑛 → ∞𝐹(𝑔𝑦𝑛, 𝑔𝑥𝑛, 𝑔𝑦𝑛)  =  𝐹(𝑦, 𝑥, 𝑦)  

   𝑔𝑧 =  𝑙𝑖𝑚𝑛 → ∞ {𝑔(𝑔𝑧𝑛)} =   𝑙𝑖𝑚𝑛 → ∞𝐹(𝑔𝑧𝑛, 𝑔𝑦𝑛, 𝑔𝑦𝑛)  =  𝐹(𝑧, 𝑦, 𝑥)  

We have proved that F and g have a tripled coincidence point. 

Corollary 2.4:- Let (𝑋, ≤) be a partially ordered set and (X,d) be a complete metric space. Let 𝐹 ∶  𝑋3  →

 𝑋 be a continuous mapping having the mixed g - monotone property on X and (𝑋3) ⊂  𝑔(𝑋) . Suppose 

there exist 𝛼 ∈  [0,1)  for which, 

 𝑑(𝐹(𝑥, 𝑦, 𝑧), 𝐹(𝑢, 𝑣, 𝑤))  ≤ 𝛼 ( 𝑑(𝑔𝑥, 𝑔𝑢)  +   𝑑(𝑔𝑦, 𝑔𝑣)  +   𝑑(𝑔𝑧, 𝑔𝑤))   2.22 

For all  𝑔𝑥 ≥  𝑔𝑢, 𝑔𝑦 ≤  𝑔𝑣  𝑎𝑛𝑑  𝑔𝑧 ≥  𝑔𝑤. 

Assume that F is continuous, g is continuous and commutes with F. If there exist  𝑥0 , 𝑦0, 𝑧0 ∈  𝑋 such 

that 

 𝑔𝑥0  ≤  𝐹(𝑥0, 𝑦0, 𝑧0), 𝑔𝑦0 ≥  𝐹(𝑦0, 𝑥0, 𝑦0), 𝑎𝑛𝑑  𝑔𝑧0  ≤  𝐹(𝑧0, 𝑦0, 𝑥0)  

Then there exist  𝑥, 𝑦, 𝑧 ∈  𝑋 such that, 

 𝐹(𝑥, 𝑦, 𝑧)  =  𝑔𝑥, 𝐹(𝑦, 𝑥, 𝑦)  =  𝑔𝑦, 𝑎𝑛𝑑 𝐹(𝑧, 𝑦, 𝑥)  =  𝑔𝑧.  
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That is, F and g have a triplet coincidence point. 

Proof:- It follows by taking 𝜇 (𝑡)  =   𝛼 (𝑡), 𝜑(𝑡)  =  3 𝛼2 (𝑡)  and 𝜓 (𝑡) =
3 𝛼2

2

𝑡
  in Theorem 2.3. 

Corollary 2.5:- Let (𝑋, ≤) be a partially ordered set and (𝑋, 𝑑) be a complete metric space. Let 𝐹 ∶

 𝑋3  →  𝑋 be a continuous mapping having the mixed g - monotone property on X and 𝐹(𝑋3) ⊂  𝑔(𝑋) . 

Suppose there exist  𝜑 ∈ Φ , 𝜓 ∈ Ψ for which, 

 𝑑(𝐹(𝑥, 𝑦, 𝑧), 𝐹(𝑢, 𝑣, 𝑤))  ≤  ( 𝑑(𝑔𝑥, 𝑔𝑢)  +   𝑑(𝑔𝑦, 𝑔𝑣) +   𝑑(𝑔𝑧, 𝑔𝑤))   

     −𝜓( 𝑑(𝑔𝑥, 𝑔𝑢)  +   𝑑(𝑔𝑦, 𝑔𝑣) +   𝑑(𝑔𝑧, 𝑔𝑤))  2.23 

For all  𝑔𝑥 ≥  𝑔𝑢, 𝑔𝑦 ≤  𝑔𝑣  𝑎𝑛𝑑  𝑔𝑧 ≥  𝑔𝑤. 

Assume that F is continuous, g is continuous and commutes with F. If there exist  𝑥0 , 𝑦0, 𝑧0  ∈  𝑋 such 

that 

  𝑔𝑥0  ≤  𝐹(𝑥0, 𝑦0, 𝑧0), 𝑔𝑦0  ≥  𝐹(𝑦0, 𝑥0, 𝑦0), 𝑎𝑛𝑑  𝑔𝑧0  ≤  𝐹(𝑧0, 𝑦0, 𝑥0)  

Then there exist  𝑥, 𝑦, 𝑧 ∈  𝑋 such that, 

 𝐹(𝑥, 𝑦, 𝑧)  =  𝑔𝑥, 𝐹(𝑦, 𝑥, 𝑦)  =  𝑔𝑦, 𝑎𝑛𝑑 𝐹(𝑧, 𝑦, 𝑥)  =  𝑔𝑧.  

That is, F and g have a triplet coincidence point. 

Proof:- In Theorem 2.3, taking 𝜇(𝑡), =  𝜑(𝑡)  =  𝑡 we get corollary 2.5. 

Theorem 2.6:- Let (𝑋, ≤) be a partially ordered set and (𝑋, 𝑑) be a complete metric space. Let 𝐹 ∶

 𝑋^3 →  𝑋 be a continuous mapping having the mixed g - monotone property on X and (𝑋3) ⊂  𝑔(𝑋) . 

Suppose there exist  𝜇, 𝜑 ∈ Φ , 𝜓 ∈ Ψ for which, 

𝜇 (𝑑(𝐹(𝑥, 𝑦, 𝑧), 𝐹(𝑢, 𝑣, 𝑤)) +  𝑑(𝐹(𝑦, 𝑥, 𝑦), 𝐹(𝑣, 𝑢, 𝑣))   +   𝑑(𝐹(𝑧, 𝑦, 𝑥), 𝐹(𝑤, 𝑣, 𝑢)))    

    ≤    𝜑( 𝑑(𝑔𝑥, 𝑔𝑢) +   𝑑(𝑔𝑦, 𝑔𝑣) +   𝑑(𝑔𝑧, 𝑔𝑤))   

    −   𝜓( 𝑑(𝑔𝑥, 𝑔𝑢) +   𝑑(𝑔𝑦, 𝑔𝑣) +   𝑑(𝑔𝑧, 𝑔𝑤))  2.24 

For all  𝑔𝑥 ≥  𝑔𝑢, 𝑔𝑦 ≤  𝑔𝑣  𝑎𝑛𝑑  𝑔𝑧 ≥  𝑔𝑤. 

Assume that F is continuous, g is continuous and commutes with F. If there exist  𝑥0 , 𝑦0, 𝑧0  ∈  𝑋 such 

that 

 𝑔𝑥0  ≤  𝐹(𝑥0, 𝑦0, 𝑧0), 𝑔𝑦0  ≥  𝐹(𝑦0, 𝑥0, 𝑦0), 𝑎𝑛𝑑  𝑔𝑧0  ≤  𝐹(𝑧0, 𝑦0, 𝑥0)  

Then there exist  𝑥, 𝑦, 𝑧 ∈  𝑋 such that, 

 𝐹(𝑥, 𝑦, 𝑧)  =  𝑔𝑥, 𝐹(𝑦, 𝑥, 𝑦)  =  𝑔𝑦, 𝑎𝑛𝑑 𝐹(𝑧, 𝑦, 𝑥)  =  𝑔𝑧. 

That is, F and g have a triplet coincidence point. 

Proof:- From the Theorem 2.3 we have, 

𝜇 (𝑑(𝐹(𝑥, 𝑦, 𝑧), 𝐹(𝑢, 𝑣, 𝑤)))  ≤
1

3
𝜑( 𝑑(𝑔𝑥, 𝑔𝑢) +   𝑑(𝑔𝑦, 𝑔𝑣) +   𝑑(𝑔𝑧, 𝑔𝑤))   

     −
1

3
𝜓( 𝑑(𝑔𝑥, 𝑔𝑢) +   𝑑(𝑔𝑦, 𝑔𝑣) +   𝑑(𝑔𝑧, 𝑔𝑤))  2.25 

Similarly we get, 

𝜇 (𝑑(𝐹(𝑦, 𝑥, 𝑦), 𝐹(𝑣, 𝑢, 𝑣)))  ≤
1

3
𝜑( 𝑑(𝑔𝑥, 𝑔𝑢) +   𝑑(𝑔𝑦, 𝑔𝑣) +   𝑑(𝑔𝑦, 𝑔𝑣))   
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     −
1

3
𝜓( 𝑑(𝑔𝑥, 𝑔𝑢) +   𝑑(𝑔𝑦, 𝑔𝑣) +   𝑑(𝑔𝑦, 𝑔𝑣))  2.26 

and 

𝜇 (𝑑(𝐹(𝑧, 𝑦, 𝑥), 𝐹(𝑤, 𝑣, 𝑢)))  ≤
1

3
𝜑( 𝑑(𝑔𝑥, 𝑔𝑢) +   𝑑(𝑔𝑦, 𝑔𝑣) +   𝑑(𝑔𝑧, 𝑔𝑤))   

     −
1

3
𝜓( 𝑑(𝑔𝑥, 𝑔𝑢) +   𝑑(𝑔𝑦, 𝑔𝑣) +   𝑑(𝑔𝑧, 𝑔𝑤))  2.27 

by adding (2.25), (2.26) and (2.27) and property of 𝜇 then the result is follows similarly to the prove of 

Theorem 2.3 and nothing to remain prove in Theorem 2.6.  

Remark 2.7:- If we take  𝜑(𝑡) =
1

3
 𝑡 and Ψ(𝑡) =

2

3
𝑡 in Theorem 2.6 then we get special case of Theorem 

1.3. 

Remark 2.8:- If we take  𝜇 =  3𝑡, 𝜑(𝑡)  =   𝑡 and Ψ(𝑡)  =  (1 −  𝑘) 𝑡 in Theorem 2.3 then we get 

special case of Theorem 1.1 for 𝑎 =  𝑏 =  𝑐 =
𝑘

3
 where  𝑘 <  3. 

Theorem 2.9:- In addition to hypothesis of Theorem 2.3 suppose that for all (𝑥, 𝑦, 𝑧) and (𝑢, 𝑣, 𝑤) in 𝑋3, 

there exists (𝑎, 𝑏, 𝑐)   in 𝑋3  such that (𝐹(𝑎, 𝑏, 𝑐), 𝐹(𝑏, 𝑎, 𝑏), 𝐹(𝑐, 𝑏, 𝑎))  is comparable to 

(𝐹(𝑥, 𝑦, 𝑧), 𝐹(𝑦, 𝑥, 𝑦), 𝐹(𝑧, 𝑦, 𝑥)) and (𝐹(𝑢, 𝑣, 𝑤), 𝐹(𝑣, 𝑢, 𝑣), 𝐹(𝑤, 𝑣, 𝑢)). Also assume that 𝜇, 𝜑  are non 

decreasing. Then F and g have unique tripled common fixed point (𝑥, 𝑦, 𝑧) that is  

  𝑥 =  𝑔𝑥 =  𝐹(𝑥, 𝑦, 𝑧), 𝑦 =  𝑔𝑦 =  𝐹(𝑦, 𝑥, 𝑦) 𝑎𝑛𝑑 𝑧 =  𝑔𝑧 =  𝐹(𝑧, 𝑦, 𝑥).  

Proof:- Due to Theorem 2.3, the set of tripled coincidence points of F and g is not empty. Assume now, 

that (𝑥, 𝑦, 𝑧) and (𝑢, 𝑣, 𝑧) are two tripled coincidence points of F and g that is  

  𝐹(𝑥, 𝑦, 𝑧)  =  𝑔𝑥, 𝐹(𝑦, 𝑥, 𝑦)  =  𝑔𝑦 𝑎𝑛𝑑 𝐹(𝑧, 𝑦, 𝑥)  =  𝑔𝑧,   

  𝐹(𝑢, 𝑣, 𝑤)  =  𝑔𝑢, 𝐹(𝑣, 𝑢, 𝑣)  =  𝑔𝑣 𝑎𝑛𝑑 𝐹(𝑤, 𝑣, 𝑢)  =  𝑔𝑤  

We will show that (𝑔𝑥, 𝑔𝑦, 𝑔𝑧) 𝑎𝑛𝑑 (𝑔𝑢, 𝑔𝑣, 𝑔𝑤) are equal. 

By assumption, there is (a,b,c) in X^3 such that (𝐹(𝑎, 𝑏, 𝑐), 𝐹(𝑏, 𝑎, 𝑏), 𝐹(𝑐, 𝑏, 𝑎)) is comparable to 

(𝐹(𝑥, 𝑦, 𝑧), 𝐹(𝑦, 𝑥, 𝑦), 𝐹(𝑧, 𝑦, 𝑥)) 𝑎𝑛𝑑 (𝐹(𝑢, 𝑣, 𝑤), 𝐹(𝑣, 𝑢, 𝑣), 𝐹(𝑤, 𝑣, 𝑢)). 

Define the sequence {𝑔𝑎𝑛}, {𝑔𝑏𝑛}𝑎𝑛𝑑 {𝑔𝑐𝑛}such that 𝑎 =  𝑎0, 𝑏 =  𝑏0, 𝑐 =  𝑐0 and   

    𝑔𝑎𝑛  =  𝐹(𝑎𝑛−1, 𝑏𝑛−1, 𝑐𝑛−1)  

     𝑔𝑏𝑛  =  𝐹(𝑏𝑛−1, 𝑎𝑛−1, 𝑏𝑛−1)  

     𝑔𝑐𝑛  =  𝐹(𝑐𝑛−1, 𝑏𝑛−1, 𝑎𝑛−1)  

for all n. Further, set 𝑥 =  𝑥0, 𝑦 =  𝑦0, 𝑧 =  𝑧0 𝑎𝑛𝑑 𝑢 =  𝑢0, 𝑣 =  𝑣0, 𝑤 =  𝑤0 and similarly define the 

sequences {𝑔𝑥𝑛}, {𝑔𝑦𝑛}, {𝑔𝑧𝑛}and  {𝑔𝑢𝑛}, {𝑔𝑣_𝑛 }, {𝑔𝑤𝑛}. Then, 

   𝑔𝑥𝑛 =  𝐹(𝑥, 𝑦, 𝑧)   𝑔𝑢𝑛  =  𝐹(𝑢, 𝑣, 𝑤)  

    𝑔𝑦𝑛  =  𝐹(𝑦, 𝑥, 𝑦)   𝑔𝑣𝑛  =  𝐹(𝑣, 𝑢, 𝑣)    2.28 

    𝑔𝑧𝑛  =  𝐹(𝑧, 𝑦, 𝑥)   𝑔𝑤𝑛  =  𝐹(𝑤, 𝑣, 𝑢)  
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for all n ≥ 1. Since (𝐹(𝑥, 𝑦, 𝑧), 𝐹(𝑦, 𝑥, 𝑦), 𝐹(𝑧, 𝑦, 𝑥))  =  (𝑔𝑥1, 𝑔𝑦1, 𝑔𝑧1)  =  (𝑔𝑥, 𝑔𝑦, 𝑔𝑧) is comparable to 

(𝐹(𝑎, 𝑏, 𝑐), 𝐹(𝑏, 𝑎, 𝑏), 𝐹(𝑐, 𝑏, 𝑎))  =  (𝑔𝑎1, 𝑔𝑏1, 𝑔𝑐1),  then it is easy to see that (𝑔𝑥, 𝑔𝑦, 𝑔𝑧) ≥

  (𝑔𝑎1, 𝑔𝑏1, 𝑔𝑐1). Recursively, we get that 

   (𝑔𝑥, 𝑔𝑦, 𝑔𝑧)  ≥   (𝑔𝑎𝑛 , 𝑔𝑏𝑛, 𝑔𝑐𝑛)    ∀ 𝑛 ≥  0.    2.29 

By using (2.29) and (2.1), we have 

𝜇 (𝑑(𝐹(𝑥, 𝑦, 𝑧), 𝐹(𝑎𝑛, 𝑏𝑛 , 𝑐𝑛)))  ≤
1

3
 𝜑( 𝑑(𝑔𝑥, 𝑔𝑎𝑛) +   𝑑(𝑔𝑦, 𝑔𝑏𝑛) +   𝑑(𝑔𝑧, 𝑔𝑐𝑛))   

     −
1

3
𝜓( 𝑑(𝑔𝑥, 𝑔𝑎𝑛) +   𝑑(𝑔𝑦, 𝑔𝑏𝑛) +   𝑑(𝑔𝑧, 𝑔𝑐𝑛))  2.30 

From (2.30), we deduce that 𝛾𝑛+1  ≤  𝜑(𝛾𝑛), where 𝛾𝑛  =  𝑑(𝐹(𝑥, 𝑦, 𝑧), 𝐹(𝑎𝑛−1, 𝑏𝑛−1, 𝑐𝑛−1)).   

    𝛾𝑛   ≤  𝜑𝑛 (𝛾0)  

That is the sequence 𝑑(𝐹(𝑥, 𝑦, 𝑧), 𝐹(𝑎𝑛−1, 𝑏𝑛−1, 𝑐𝑛−1)) is decreasing. Therefore, there exists 𝛼 ≥  0 such 

that 

 𝑙𝑖𝑚𝑛 → ∞  [𝑑(𝑔𝑥, 𝑔𝑎𝑛) +   𝑑(𝑔𝑦, 𝑔𝑏𝑛) +   𝑑(𝑔𝑧, 𝑔𝑐𝑛)]  = 𝛼.    2.31 

We shall show that 𝛼 =  0. Suppose, to the contrary, that 𝛼 >  0. Taking the limit as 𝑛 →  ∞ in  

(2.30), we have 

 𝜇(𝛼)  ≤  𝜑( 𝛼)  −  𝑙𝑖𝑚𝑛 → ∞  𝜓( 𝑑(𝑔𝑥, 𝑔𝑎𝑛) +   𝑑(𝑔𝑦, 𝑔𝑏𝑛) +   𝑑(𝑔𝑧, 𝑔𝑐𝑛))  <  𝜑 (𝛼)  

a contradiction. Thus, 𝛼 =  0, that is 

 𝑙𝑖𝑚𝑛 → ∞ [𝑑(𝑔𝑥, 𝑔𝑎𝑛) +   𝑑(𝑔𝑦, 𝑔𝑏𝑛) +   𝑑(𝑔𝑧, 𝑔𝑐𝑛)]  =   0.    2.32 

It implies 

 𝑙𝑖𝑚𝑛 → ∞  [𝑑(𝑔𝑥, 𝑔𝑎𝑛)]  =   𝑙𝑖𝑚𝑛 → ∞  [𝑑(𝑔𝑦, 𝑔𝑏𝑛)]   =   𝑙𝑖𝑚𝑛 → ∞ [𝑑(𝑔𝑧, 𝑔𝑐𝑛)]  =  0    Similarly 

we show that 

𝑙𝑖𝑚𝑛 → ∞  [𝑑(𝑔𝑢, 𝑔𝑎𝑛)]  =   𝑙𝑖𝑚𝑛 → ∞  [𝑑(𝑔𝑣, 𝑔𝑏𝑛)]   =   𝑙𝑖𝑚𝑛 → ∞ [𝑑(𝑔𝑤, 𝑔𝑐𝑛)]  =  0  2.33 

Combining (2.32) and (2.33) yields that (𝑔𝑥, 𝑔𝑦, 𝑔𝑧) 𝑎𝑛𝑑 (𝑔𝑢, 𝑔𝑣, 𝑔𝑤) are equal. 

Sinc𝑒 𝐹(𝑥, 𝑦, 𝑧)  =  𝑔𝑥, 𝐹(𝑦, 𝑥, 𝑦)  =  𝑔𝑦 𝑎𝑛𝑑 𝐹(𝑧, 𝑦, 𝑥)  =  𝑔𝑧  by commutativity of F and g, we have 

  𝑔(𝐹(𝑥, 𝑦, 𝑧))  =  𝑔(𝑔𝑥)  =   𝐹(𝑔𝑥, 𝑔𝑦, 𝑔𝑧)  

  𝑔(𝐹(𝑦, 𝑥, 𝑦))  =  𝑔(𝑔𝑦)  =  𝐹(𝑔𝑦, 𝑔𝑥, 𝑔𝑦)   

   𝑔(𝐹(𝑧, 𝑦, 𝑥))  =  𝑔(𝑔𝑧)  =  𝐹(𝑔𝑧, 𝑔𝑦, 𝑔𝑥),  

Denote 𝑔𝑥 =  𝑥′, 𝑔𝑦 =  𝑦′ 𝑎𝑛𝑑 𝑔𝑧 =  𝑧′. From the precedent identities, 

  𝐹(𝑥′, 𝑦′, 𝑧′)  =  𝑔𝑥′, 𝐹(𝑦′, 𝑥′, 𝑦′)  =  𝑔𝑦′ 𝑎𝑛𝑑 𝐹(𝑧′, 𝑦′, 𝑥′)  =  𝑔𝑧′  

That is, (𝑥′, 𝑦′, 𝑧′) is a tripled coincidence point of F and g. Consequently, (𝑔𝑥′, 𝑔𝑦′, 𝑔𝑧′) 𝑎𝑛𝑑 (𝑔𝑥, 𝑔𝑦, 𝑔𝑧)  

are equal, that  is 𝑔𝑥 =  𝑔𝑥′, 𝑔𝑦 =  𝑔𝑦′ 𝑎𝑛𝑑 𝑔𝑧 =  𝑔𝑧′. 

We deduce 𝑔𝑥 =  𝑔𝑥′ =  𝑥, 𝑔𝑦 =  𝑔𝑦′ =  𝑦  𝑎𝑛𝑑 𝑔𝑧 =  𝑔𝑧′ =  𝑧.  Therefore, (𝑥′, 𝑦′, 𝑧′) is a tripled 

common fixed point of F and g. Its uniqueness follows from Theorem 2.3.  

http://www.ijcrt.org/


www.ijcrt.org                                                    © 2022 IJCRT | Volume 10, Issue 3 March 2022 | ISSN: 2320-2882 

IJCRT2203203 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b769 
 

Remark that Theorem 2.3 is more general than Theorem 1.1, since the contractive condition (2.1) is 

weaker than (1.1), also Theorem 2.3 is generalization of the Theorem 1.3. A fact which clearly 

illustrated by the following example. 

Example 2.10:-  Let 𝑋 =  𝑅 with 𝑑(𝑥, 𝑦) = ∣  𝑥 −  𝑦 ∣ and natural ordering and let  𝑔: 𝑋 →  𝑋, and  

𝐹: 𝑋3  →  𝑋 be given by 

   𝑔(𝑥) =
𝑛+1

𝑛
𝑥,   𝑛 =  1,2,3. . . . . . . 𝑥 ∈  𝑋  

and  

   𝐹(𝑥, 𝑦, 𝑧) =
𝑥+𝑦+𝑧

2
  ∀  (𝑥, 𝑦, 𝑧)  ∈  𝑋3   

It is clear that F is continuous and the mixed 𝑔 − monotone property. We now take 𝜇(𝑡) =  𝑡, 𝜑(𝑡) =

𝑛+1

𝑛
𝑡 and 𝜓(𝑡) =

𝑛(𝑛+2)

𝑛+1
𝑡. Then it is easy to see that all the hypotheses of Theorem 2.3 are satisfied and 

(0,0,0) is tripled coincidence point of F and g. 

Now for 𝑥 =  𝑢, 𝑧 =  𝑤 𝑎𝑛𝑑  𝑣 >  𝑦, we have 

  𝑑(𝐹(𝑥, 𝑦, 𝑧), 𝐹(𝑢, 𝑣, 𝑤))  =
1

2
∣  𝑣 −  𝑦 ∣  >

1

3
∣  𝑣 −  𝑦 ∣ ≥

𝑘

3
[𝑑(𝑥, 𝑢) + 𝑑(𝑦, 𝑣) +

𝑑(𝑧, 𝑤)]  

for any 𝑘 ∈  [0,1) that is the conition (1.1) given in Theorem 1.1 is not applicable for, 𝑎 =  𝑏 =  𝑐 =
𝑘

3
. 
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